Self-avoiding walks attached to triangular and face-centred cubic lattice surfaces: extended exact enumeration data

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1985 J. Phys. A: Math. Gen. 18 L457
(http://iopscience.iop.org/0305-4470/18/8/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:40

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Self-avoiding walks attached to triangular and face-centred cubic lattice surfaces: extended exact enumeration data

K De'Bell \dagger and T Lookman
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 3K7

Received 19 February 1985

Abstract

Analysis of exact enumeration data of self-avoiding walks attached to the surfaces of triangular and face-centred cubic lattices is consistent with $\gamma_{1}=0.718 \pm 0.008+136 \Delta p_{c}$ where $\Delta p_{\mathrm{c}}=p_{\mathrm{c}}-0.0995$, in three dimensions and $0.9530 \leqslant \gamma_{1} \leqslant 0.9548$ in two dimensions, where p_{c} for the triangular lattice is assumed to lie in the range $0.240915 \leqslant p_{\mathrm{c}} \leqslant 0.24093$.

In this letter we report on the analysis of extended exact enumeration data for self-avoiding walks (SAws) attached to the surfaces of the semi-infinite triangular and face-centred cubic (FCC) lattices. (The semi-infinite FCC lattice is chosen to have a triangular lattice as its surface.) This work was motivated in part by the derivation of a possible exact result for the ordinary transition exponent γ_{1} (Cardy 1984) in two dimensions and the increasing number of experimental results for surface critical phenomena in three-dimensional systems (for a list of these and a review of theoretical results see the article by Binder (1983)).

We have determined the first 14 terms for the triangular lattice and first 10 terms for the FCC lattice in the generating function

$$
\begin{equation*}
\chi_{1}=\sum_{n} C_{n} p^{n} \underset{p \rightarrow p_{c}^{-}}{\sim}\left(p_{c}-p\right)^{-\gamma_{1}}(1+\ldots) \tag{1}
\end{equation*}
$$

where C_{n} is the number of n-step saws which start from a point on the surface (table 1) (γ_{1} is the ordinary transition exponent).

Cardy (1984) has shown that assumptions about conformal invariance for twodimensional systems at a phase transition lead to

$$
\begin{equation*}
\gamma_{1}=61 / 64 . \tag{2}
\end{equation*}
$$

A previous analysis of the first 10 terms in χ_{1} for the triangular lattice was consistent with the above value of $\gamma_{1}(2)$ but had rather large error bounds and was based on biased Padé approximants at an assumed $p_{c}=0.2408$ (De'Bell and Essam 1980). Analysis of the extended series supports a higher value of p_{c} and a revised estimate of γ_{1}, as detailed below. Cardy and Redner (1984) have analysed χ_{1} for the square lattice using a ratio method and obtained a value of γ_{1} consistent with (2). Guttmann

[^0]Table 1. Coefficients c of the generating function $\chi_{1}=\Sigma_{n} C_{n} p^{n}$ for SAws originating at the surface of triangular and FCC lattices.

c (triangular)	c (FCC lattice)
1	1
4	9
16	81
66	753
272	7143
1118	68403
4160	658959
19018	6377829
78514	61962261
324330	603845955
1340338	
5541266	
22916110	
94795900	

and Torrie (1984) also argued that the above results for γ_{1} should be exact and analysed the problem of a SAW in a wedge geometry in considerable detail.

Initially Padé approximants were formed to the logarithmic derivative of χ_{1} for the triangular lattice. The poles of the higher-order approximants fall mainly in the range $0.2409 \leqslant p_{c} \leqslant 0.2410$ with a slight downward apparent trend and points on a pole-residue plot (apparently) falling on a smooth curve. Values of γ_{1} obtained from this curve are consistent with (2) if we accept a value of $p_{c} \simeq 0.24089$, which is consistent with the downward trend seen in the Padé approximant estimates. (A similar analysis for walks in the bulk by Watts (1975) gave $p_{c}=0.24085_{-0.000}^{+0.000} 05$).

In recent years, the importance of non-analytic 'corrections to scaling', represented by ... in (1), in determining the exponent of the leading-order term have been demonstrated by a number of authors (Adler et al 1983 and references therein). Therefore, we have reanalysed χ_{1} using the confluent singularity analysis described by Baker and Hunter (1973). In this analysis an auxiliary function is formed from χ_{1}, which has a simple pole at $1 / \gamma_{1}$ and the position of this pole is estimated from Padé approximants to the auxiliary function.

Since the construction of the auxiliary function in the Baker-Hunter analysis requires the value of p_{c} as input, we performed the analysis for a number of trial values of p_{c} in the range $0.24086 \leqslant p_{c} \leqslant 0.24098$. The corresponding spread in the estimates of $1 / \gamma_{1}$ is shown in figure 1. For trial values of p_{c} less than 0.240915 the Padé approximants are not well converged; however, as this value of p_{c} is approached, the convergence rapidly improves and a region of best convergence is found for $0.240915 \leqslant$ $p_{\mathrm{c}} \leqslant 0.24093$. Assuming $p_{c}=0.240915$ implies $\gamma_{1}=0.9537 \pm 0.0007$ in good agreement with the value obtained by Cardy (1984). However, the central estimate of γ_{1} increases as the assumed value of p_{c} is increased so that assuming $p_{c}=0.24092$ leads to $\gamma_{1}=$ 0.9542 ± 0.0006, which is just inconsistent with the value obtained by Cardy. In short, while our results are consistent with $p_{c}=0.240915$ and the proposed exact value of $\gamma_{1}(2)$, we cannot rule out a slightly higher value of p_{c} and subsequent small inconsistency with the proposed exact value for γ_{1}. As a further check on the consistency of our results with the proposed exact results when $p_{c}=0.240915$, we have estimated $\gamma_{11}+2 \nu$

Figure 1. Location of the poles in the Padé approximants to the auxiliary function to the series X_{1} for the triangular lattice, formed by the Baker-Hunter (1973) method. The approximants shown are [6/4], [5/5], [6/5], [4/6], [6/6], [7/5], [7/6] and [5/7]. The [5/6] and [6/7] approximants have anomalous behaviour (e.g. regions with no physical pole) in this range of assumed p_{c}.
from the first nine terms of

$$
\begin{equation*}
\chi_{11}^{(2)}=\sum_{n} \sum_{r} C_{n}(r) p_{n} r^{2} \sim\left|p_{c}-p\right|^{-\gamma_{11}-2 v} \tag{3}
\end{equation*}
$$

using the Baker-Hunter method for this value of $p_{c}, \chi_{11}^{(2)}$ was previously analysed by De'Bell and Essam (1980) by biased Dlog Padé approximants with $p_{c}=0.2408$. In (3) $C_{n}(\boldsymbol{r})$ is the number of n-step walks from the origin to a site at \boldsymbol{r} in the surface. Despite the small number of coefficients in $\chi_{11}^{(2)}$ available, the approximants are well converged and consistent with

$$
\begin{equation*}
\gamma_{11}+2 \nu=1.323 \pm 0.013 \tag{4}
\end{equation*}
$$

The scaling relation

$$
\begin{equation*}
2 \gamma_{1}-\gamma_{11}=\gamma+\nu \tag{5}
\end{equation*}
$$

combined with the values of $\gamma_{1}=61 / 64, \nu=3 / 4, \gamma=43 / 32$ obtained from conformal invariance (Cardy 1984 and references therein) implies

$$
\begin{equation*}
\gamma_{1}+2 \nu=1.3125 \tag{6}
\end{equation*}
$$

in good agreement with (4).
In the case of the fCC lattice, we again formed Padé approximants to the derivative of the logarithm of χ_{1}. The resulting pole-residue plot is shown in figure 2 and from this we obtain

$$
\begin{equation*}
\gamma_{1}=0.718 \pm 0.008+136 \Delta p_{\mathrm{c}} \tag{7}
\end{equation*}
$$

Figure 2. Pole-residue plot of Padé approximants to the derivative of the logarithm of χ_{1} for the FCC lattice.
where the central estimate is for $p_{c}=0.0995$ (De'Bell and Essam 1980) and the dependence on $\Delta p\left(=p_{c}-0.0995\right)$ is estimated from the tangent at this point. Assuming $p_{c}=0.0995$, the above estimate of $\gamma_{1}(7)$ is consistent with that obtained by other workers from exact enumeration data (0.70 ± 0.02 Barber et al 1978 , Ishinabe and Whittington 1981) but inconsistent with the narrower range $0.675 \leqslant \gamma_{1} \leqslant 0.680$ obtained by Eisenriegler et al (1982) from a Monte Carlo analysis for the tetrahedral lattice. Padé approximants to the auxiliary function generated by the Baker-Hunter analysis were not well converged for the FCC lattice; however, it seems probable that the uncertainty in γ_{1}, due to the small number of terms available and uncertainty in p_{c}, is relatively large compared with the more subtle effects of correction to scaling terms.

In summary, analysis of exact enumeration data for saws attached to a surface results in the estimates of γ_{1} (for the ordinary transition) for the triangular and FCC lattice quoted in the abstract. In the case of the triangular lattice, we have used the method of Baker and Hunter (1973) to allow for confluent singularities and the best convergence of the Padé approximants occurs for trial values of the critical value of p in the range $0.240915 \leqslant p_{c} \leqslant 0.24093$. Our results are consistent with the value of $\gamma_{1}=64 / 61$ obtained by Cardy (1984) only at the lower extreme of this range of values for p_{c}. The range of values for γ_{1} quoted in the abstract represents only the total variation in the Padé approximants in this range of p_{c} and, we emphasise, is not an absolute measure of the uncertainty in γ_{1}. Our analysis of the FCC lattice data has been limited to a conventional Dlog Padé analysis and the estimate of γ_{1} in the abstract was read from the corresponding pole-residue plot (figure 2). Notice that the estimate of γ_{1} is strongly dependent on the value of p_{c} for the FCC lattice.

We are grateful to the University of Western Ontario for providing financial support and computer facilities.

References

Adler J, Moshe M and Privman V 1983 Percolation Structures and Processes ed G Deutscher, R Zallen and J Adler chap 17

Baker G A Jr and Hunter D L 1973 Phys. Rev. B 7 3377-99
Barber M N, Guttmann A J, Middlemiss K M, Torrie G M and Whittington S G 1978 J. Phys. A: Math. Gen. 11 1833-42
Binder K 1983 Phase Transitions and Critical Phenomena vol 8, ed C Domb and J L Lebowitz (London: Academic)
Cardy J L 1984 Nucl. Phys. B 240514
Cardy J L and Redner S 1984 J. Phys. A: Math. Gen. 17 L933-8
De'Bell K and Essam J W 1980 J. Phys. C: Solid State Phys. 13 4811-21
Eisenriegler E, Kramer K and Binder K 1982 J. Chem. Phys. 776296
Guttmann A J and Torrie G M 1984 J. Phys. A: Math. Gen. 17 3539-52
Ishinabe T and Whittington S G 1981 J. Phys. A: Math. Gen. 14 439-46
Watts M G 1975 J. Phys. A: Math. Gen. 8 61-6

[^0]: \dagger Permanent address: Physics Department, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5.

