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LETTER TO THE EDITOR 

Self-avoiding walks attached to triangular and face-centred 
cubic lattice surfaces: extended exact enumeration data 

K De’Bellt and T Lookman 
Department of Applied Mathematics, University of Western Ontario, London, Ontario, 
Canada N6A 3K7 

Received 19 February 1985 

Abstract. Analysis of exact enumeration data of self-avoiding walks attached to the surfaces 
of triangular and face-centred cubic lattices is consistent with y ,  = 0.718*0.008+ 136 Ap, 
where Apc = p E  - 0.0995, in three dimensions and 0.9530 s y, < 0.9548 in two dimensions, 
where p c  for the triangular lattice is assumed to lie in the range 0.240 915 s pc  s 0.240 93. 

In this letter we report on the analysis of extended exact enumeration data for 
self-avoiding walks (SAWS) attached to the surfaces of the semi-infinite triangular and 
face-centred cubic (FCC) lattices. (The semi-infinite FCC lattice is chosen to have a 
triangular lattice as its surface.) This work was motivated in part by the derivation of 
a possible exact result for the ordinary transition exponent y ,  (Cardy 1984) in two 
dimensions and the increasing number of experimental results for surface critical 
phenomena in three-dimensional systems (for a list of these and a review of theoretical 
results see the article by Binder (1983)). 

We have determined the first 14 terms for the triangular lattice and first 10 terms 
for the FCC lattice in the generating function 

xI=Cc, ,pn - ( p ~ ~ ) - ~ l ( i + . . . )  
n P - P i  

where C,, is the number of n-step SAWS which start from a point on the surface (table 
1) (y l  is the ordinary transition exponent). 

Cardy (1984) has shown that assumptions about conformal invariance for two- 
dimensional systems at a phase transition lead to 

=61/64. (2) 

A previous analysis of the first 10 terms in xI for the triangular lattice was consistent 
with the above value of y 1 ( 2 )  but had rather large error bounds and was based on 
biased Pad6 approximants at an assumed pc=0.2408 (De’Bell and Essam 1980). 
Analysis of the extended series supports a higher value of pc and a revised estimate 
of y l ,  as detailed below. Cardy and Redner (1984) have analysed xI for the square 
lattice using a ratio method and obtained a value of yI consistent with (2). Guttmann 
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Table 1. Coefficients c of the generating function x ,  = P, C,#” for SAWS originating at the 
surface of triangular and FCC lattices. 

c (triangular) c (FCC lattice) 
~~ 

1 
4 

16 
66 

212 
1118 
4 160 

19 018 
78 514 

324 330 
I 340 338 
5 541 266 

22 916 110 
94 795 900 

1 
9 

81 
753 

7 143 
68 403 

658 959 
6 317 829 

61 962 261 
603 845 955 

and Torrie (1984) also argued that the above results for yI should be exact and analysed 
the problem of a SAW in a wedge geometry in considerable detail. 

Initially Pad6 approximants were formed to the logarithmic derivative of xI for 
the triangular lattice. The poles of the higher-order approximants fall mainly in the 
range 0.2409spcs0.2410 with a slight downward apparent trend and points on a 
pole-residue plot (apparently) falling on a smooth curve. Values of y1 obtained from 
this curve are consistent with (2) if we accept a value of p c  = 0.240 89, which is consistent 
with the downward trend seen in the Pad6 approximant estimates. (A similar analysis 
for walks in the bulk by Watts (1975) gave p c  = 0.240 85?::%:;). 

In recent years, the importance of non-analytic ‘corrections to scaling’, represented 
by.  . . in ( l ) ,  in determining the exponent of the leading-order term have been demon- 
strated by a number of authors (Adler et a1 1983 and references therein). Therefore, 
we have reanalysed xI using the confluent singularity analysis described by Baker and 
Hunter (1973). In this analysis an auxiliary function is formed from xI ,  which has a 
simple pole at I /  y1  and the position of this pole is estimated from Pad6 approximants 
to the auxiliary function. 

Since the construction of the auxiliary function in the Baker-Hunter analysis 
requires the value of pc as input, we performed the analysis for a number of trial values 
of p c  in the range 0.240 86 G p C s  0.240 98. The corresponding spread in the estimates 
of l / y ,  is shown in figure 1 .  For trial values of p c  less than 0.240915 the Pad6 
approximants are not well converged; however, as this value of p c  is approached, the 
convergence rapidly improves and a region of best convergence is found for 0.240 91 5 s 
p c  s 0.240 93. Assuming p c  = 0.240 91 5 implies yI = 0.9537 f 0.0007 in good agreement 
with the value obtained by Cardy (1984). However, the central estimate of yI increases 
as the assumed value of p c  is increased so that assuming p c  = 0.240 92 leads to yI = 
0.9542 f 0.0006, which is just inconsistent with the value obtained by Cardy. In short, 
while our results are consistent with pc = 0.240 9 15 and the proposed exact value of 
y ,  (2), we cannot rule out a slightly higher value of p c  and subsequent small inconsistency 
with the proposed exact value for yI .  As a further check on the consistency of our 
results with the proposed exact results when pc = 0.240 915, we have estimated yI1 +2v 
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Figure 1. Location of the poles in the Pad6 approximants to the auxiliary function to the 
series x ,  for the triangular lattice, formed by the Baker-Hunter (1973) method. The 
approximants shown are [6/4], [5/5], [6/5], [4/6], [6/6], [7/5], [7/6] and [5/7]. The [5/6] 
and [6/7] approximants have anomalous behaviour (e.g. regions with no physical pole) in 
this range of assumed p,. 

from the first nine terms of 

using the Baker-Hunter method for this value of pc.  was previously analysed 
by De’Bell and Essam (1980) by biased Dlog Pad6 approximants with pc = 0.2408. In 
(3) Cn(r) is the number of n-step walks from the origin to a site at r in the surface. 
Despite the small number of coefficients in x::) available, the approximants are well 
converged and consistent with 

71 I + 2~ = 1.323 f 0.013. (4) 

2Yl-Y,l= Y+ v ( 5 )  

The scaling relation 

combined with the values of y ,  = 61/64, v = 314, y = 43/32 obtained from conformal 
invariance (Cardy 1984 and references therein) implies 

y 1 + 2 ~ =  1.3125 (6) 
in good agreement with (4). 

In the case of the FCC lattice, we again formed Pad6 approximants to the derivative 
of the logarithm of xl. The resulting pole-residue plot is shown in figure 2 and from 
this we obtain 

(7) = 0.7 18 f 0.008 + 136 Ap, 
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Figure 2. Pole-residue plot of Pade approximants to the derivative of the logarithm of ,y, 
for the FCC lattice. 

where the central estimate is for pc=0.0995 (De’Bell and Essam 1980) and the depen- 
dence on Ap (=p,-0.0995) is estimated from the tangent at this point. Assuming 
pc = 0.0995, the above estimate of yl(7) is consistent with that obtained by other workers 
from exact enumeration data (0.70 k 0.02 Barber et a1 1978, Ishinabe and Whittington 
198 1) but inconsistent with the narrower range 0.675 S yI S 0.680 obtained by Eisenrieg- 
ler et a1 (1982) from a Monte Carlo analysis for the tetrahedral lattice. Pad6 
approximants to the auxiliary function generated by the Baker-Hunter analysis were 
not well converged for the FCC lattice; however, it seems probable that the uncertainty 
in yI,  due to the small number of terms available and uncertainty in pc ,  is relatively 
large compared with the more subtle effects of correction to scaling terms. 

In summary, analysis of exact enumeration data for SAWS attached to a surface 
results in the estimates of yI (for the ordinary transition) for the triangular and FCC 

lattice quoted in the abstract. In the case of the triangular lattice, we have used the 
method of Baker and Hunter (1973) to allow for confluent singularities and the best 
convergence of the Pad6 approximants occurs for trial values of the critical value of 
p in the range 0.240 915 d p c  S 0.240 93. Our results are consistent with the value of 
yI = 64/61 obtained by Cardy (1984) only at the lower extreme of this range of values 
for pc .  The range of values for y ,  quoted in the abstract represents only the total 
variation in the Pad6 approximants in this range of p c  and, we emphasise, is not an 
absolute measure of the uncertainty in yI.  Our analysis of the FCC lattice data has 
been limited to a conventional Dlog Pad6 analysis and the estimate of y, in the 
abstract was read from the corresponding pole-residue plot (figure 2). Notice that the 
estimate of yI is strongly dependent on the value of p c  for the FCC lattice. 

We are grateful to the University of Western Ontario for providing financial support 
and computer facilities. 
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